首页 > 编程知识 正文

运算放大器稳定性分析(TI合集),TI运算放大器

时间:2023-05-04 08:30:21 阅读:190828 作者:3812

TI高精度实验室-运算放大器-第六节-压摆率

首先来看什么是压摆率 压摆率被定义为运放输出电压可以达到的 最大摆动速率 它以 V/us 为单位 测量压摆率时可以在运放的输入端 加入一个较大的阶跃信号 比如 1V 幅值 然后测量输出端的电压摆动 即测量输出电平从最终输出量的 10% 增加到 90% 时的时间间隔 有些运放的数据手册中 会专门给出压摆率指标 有些则用大信号的阶跃响应来代替 在这个例子中 我们可以看到 输出电压满幅为 10V 满幅的 10% 和 90% 对应的电平 分别为 1V 和 9V 它们之间的上升时间为 0.25 微秒 从而可以计算出这里的压摆率为 29V/us 压摆率主要描述了 运放在大信号输入时的响应指标

让我们先来复习一些基础知识 这个等式描述的是流经电容器的电流 等于电容器容值乘以电容器两端电压 随时间的变化率 当电流恒定时 电容器两端电压将会随着时间成线性变化 从而可以表示为v=mt 其中 v(t) 是电压的瞬时值 m 是图中直线的斜率 压摆率是运放的一个很重要的参数 下面我们等效画出运放的输入极和放大极 输入极有个跨导增益 gm 它把运放差分对管输入的电压 转化为本极的输出电流 Iout Iout 流入放大极 并对放大极的密勒电容 即图中的 Cc 进行充电 根据上一页幻灯片的说明 当 Iout 是常数时 Cc 两端电压将会线性增加 对于缓慢变化的信号 Iout 远小于本极的饱和输出电流 Iout(max) 这说明 Iout 会随着输入差分电压而变化 但对于快速变化的大信号 Iout 将会达到其饱和电流值 在这个例子中 Iout 饱和后运放的输入 将不再是虚短路 即运放的正负输入端引脚间的电压不再相等 因为 Iout 达到饱和成为常数 Cc 两端的电压 Vout 将会随时间以固定斜率线性增加 此时就认为运放达到压摆极限 即其输出转换速度达到了最快

体效应(body effect) 是一种常见的影响压摆率的效应 通过改变共模电压 体效应使放大器的压摆率降低 这种影响在同相输入结构的运放电路中尤其明显 因为此时共模电压会随输入电压的变化而变化 对同相放大电路 共模电压越高压摆率越低 一般放大器的压摆率都是在同相电路下测试的 即在最坏条件下测试的

我们此处假设晶体管为 PMOS 即 P 型 MOSFET 图中所示为典型的 PMOS 横截面 它在 P 型的硅基片上 嵌入了 N 型井作为衬底 在衬底两端各嵌入了 P 型的源极和漏极 从图中可见 在 P 型硅基片 和 N 型衬底之间会形成一个二极管 通常这个二极管是反偏的 当改变芯片工作时的共模电压 即改变二极管 PN 结两端电压时 因为 pn 结耗尽层宽度变化 结电容大小也会发生变化 我们重新回顾一下运放的输入级 来看看体效应电容对压摆率的影响 和前面的视频教程一样 我们在运放输入引脚之间 施加一个大阶跃信号 图中左边的 PMOS 截止 右边 PMOS 导通 从而输入级的所有电流 Iinput 从右边 PMOS 流过造成 Iout 饱和 运放输出达到压摆率上限 然而 一端接地的体效应电容 为 Iout 提供了另一条支路 使得流入密勒电容的电流减小 因为密勒电容两端的电压 和流经电容的电流呈线性关系 所以体效应电容造成的分流 使运放的压摆率降低 在这个例子中 体效应电容和密勒电容都等于 20pF 所以 Iout 是 Iinput 的一半 根据压摆率=Iout/Cc 可知 运放的压摆率也是没有体效应电容时的一半 通过充电 体效应电容两端电压最后会等于共模电压

版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。