首页 > 编程知识 正文

Python无监督视频去雾GAN

时间:2023-11-20 08:41:22 阅读:288717 作者:XARJ

本文将深入阐述Python无监督视频去雾GAN。

一、GAN简介

对于深度学习领域的开发者,生成对抗网络(Generative Adversarial Networks,GAN)绝对不会陌生。GAN是一种无监督的深度学习模型,由生成器和判别器两个部分组成,两个部分相互博弈,生成器生成判别器难以分辨真实性的数据,判别器尽力区分真实数据和生成数据,以此来共同进步。GAN在图像合成、图像编辑、视频生成、风格迁移等众多领域中都大放异彩。


# GAN示例代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 定义生成器
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.fc1 = nn.Linear(100, 256)
        self.fc2 = nn.Linear(256, 512)
        self.fc3 = nn.Linear(512, 1024)
        self.fc4 = nn.Linear(1024, 784)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = torch.tanh(self.fc4(x))
        return x

# 定义判别器
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.fc1 = nn.Linear(784, 1024)
        self.fc2 = nn.Linear(1024, 512)
        self.fc3 = nn.Linear(512, 256)
        self.fc4 = nn.Linear(256, 1)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = torch.sigmoid(self.fc4(x))
        return x

# 加载模型并测试
generator = Generator()
discriminator = Discriminator()

z = torch.randn(64, 100)
generated_data = generator(z)
discriminated_data = discriminator(generated_data)
print(generated_data.shape, discriminated_data.shape)

二、GAN应用之视频去雾GAN

在视频处理领域中,我们经常需要处理一些存在雾霾的视频,以得到更加清晰的视频。在这种情况下,GAN可以提供一种效果非常好的解决方案。下面我们将详细介绍如何使用Python无监督视频去雾GAN。

三、视频去雾GAN原理

视频去雾GAN的基础是单幅图像去雾,它的主要思想是将雾中较暗部分的像素值缩放到较大范围,增强图像对比度,进而提高可见性。视频去雾GAN则在此基础上将单幅图像去雾扩展到了多帧视频帧上。具体而言,利用视频中连续多帧的信息,生成器会在处理当前帧时,综合前后几个时刻帧的信息协同生成新的高质量、高分辨率的视频帧,同时判别器会根据前后时刻的帧信息去判断当前帧是否清晰,并不断调整生成器参数,以提高生成质量和模型的稳定性。

四、视频去雾GAN实现

下面我们将通过一个完整示例,介绍如何使用Python无监督视频去雾GAN。

4.1 数据准备阶段

首先,准备数据是视频去雾GAN的第一步。我们将使用D-Hazy数据集,该数据集包含多个场景、各种尺度、不同特征的视频去雾数据。该数据集可以从GitHub下载(链接:https://github.com/roimehrez/DHazy)。


# 安装ffmpeg
!apt update
!apt install ffmpeg

# 下载数据集
!git clone https://github.com/roimehrez/DHazy.git

# 准备数据集
!mkdir datasets
!mkdir datasets/DHazy
!mkdir datasets/DHazy/train
!mkdir datasets/DHazy/train/hazy
!mkdir datasets/DHazy/train/gt

import os
import cv2

# 转换视频帧到图像
def video_to_frames(video_path, img_path):
    vidcap = cv2.VideoCapture(video_path)
    success, image = vidcap.read()
    count = 0

    while success:
        cv2.imwrite(os.path.join(img_path, "frame{:06d}.jpg".format(count)), image)
        success, image = vidcap.read()
        count += 1

    return count

# 分割视频为帧,并将数据存储在数据集文件夹中
train_videos = ['video1.mp4', 'video2.mp4', 'video3.mp4']
for video in train_videos:
    video_path = os.path.join('DHazy/data', video)
    img_path = os.path.join('datasets/DHazy/train/hazy', video.split('.')[0])
    os.mkdir(img_path)
    video_to_frames(video_path, img_path)

# 处理图像的GT
import numpy as np

# 开运算增强图像对比度
def create_kernel(size):
    kernel = np.ones((size, size), np.uint8)
    return kernel

def enhance_contrast(image):
    kernel = create_kernel(5)
    opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
    result = image + (image - opening)
    return result

# 缩放图像,提高效率
def enhance_resolution(image):
    r_image = cv2.resize(image, (image.shape[1] // 2, image.shape[0] // 2), interpolation=cv2.INTER_CUBIC)
    r_image = cv2.resize(r_image, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
    return r_image

# 处理数据集并保存数据
import glob

hazy_image_paths = sorted(glob.glob('datasets/DHazy/train/hazy/**/*.jpg', recursive=True))

for hazy_image_path in hazy_image_paths:
    hazy_image = cv2.imread(hazy_image_path, cv2.IMREAD_COLOR)
    gt_image_path = hazy_image_path.replace('hazy', 'gt').replace('_hazy', '')
    gt_image = enhance_contrast(cv2.imread(gt_image_path, cv2.IMREAD_COLOR))
    gt_image = enhance_resolution(gt_image)
    cv2.imwrite(gt_image_path, gt_image)

4.2 模型搭建阶段

有了数据,我们接下来需要搭建模型。当前,GAN中最主流的网络结构是DCGAN,即深度卷积生成对抗网络。它的设计主要思想是在生成器和判别器中使用卷积层和转置卷积层。值得注意的是,为了提高模型的鲁棒性及稳定性,我们可以加入Batch Normalization,通过对比实验证明,Batch Normalization可以使训练DAGAN时数十次加速,并且具有平滑思维的作用。


# 导入所需模块
import torch
import torch.nn as nn
import torch.nn.functional as F

# 定义判别器网络结构,使用DCGAN结构,并加入Batch Normalization
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.conv4 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
        self.bn4 = nn.BatchNorm2d(256)
        self.conv5 = nn.Conv2d(256, 1, kernel_size=4, stride=2, padding=1)

    def forward(self, x):
        x = self.conv1(x)
        x = F.leaky_relu(x, 0.2)
        x = self.conv2(x)
        x = self.bn2(x)
        x = F.leaky_relu(x, 0.2)
        x = self.conv3(x)
        x = self.bn3(x)
        x = F.leaky_relu(x, 0.2)
        x = self.conv4(x)
        x = self.bn4(x)
        x = F.leaky_relu(x, 0.2)
        x = self.conv5(x)
        x = torch.sigmoid(x)
        return x

# 定义生成器网络结构,使用DCGAN结构,并加入BN和Skip Connection
class Generator(nn.Module):
    def __init__(self, skip=True):
        super(Generator, self).__init__()
        self.skip = skip
        self.conv1 = nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.conv4 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
        self.bn4 = nn.BatchNorm2d(256)
        self.deconv1 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1)
        self.bn5 = nn.BatchNorm2d(128)
        self.deconv2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
        self.bn6 = nn.BatchNorm2d(64)
        self.deconv3 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1)
        self.bn7 = nn.BatchNorm2d(32)
        self.deconv4 = nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1)

    def forward(self, x):
        c1 = self.conv1(x)
        l1 = F.leaky_relu(c1, 0.2)
        c2 = self.conv2(l1)
        b2 = self.bn2(c2)
        l2 = F.leaky_relu(b2, 0.2)
        c3 = self.conv3(l2)
        b3 = self.bn3(c3)
        l3 = F.leaky_relu(b3, 0.2)
        c4 = self.conv4(l3)
        b4 = self.bn4(c4)
        l4 = F.leaky_relu(b4, 0.2)

        if self.skip:
            u1 = self.deconv1(l4)
            b5 = self.bn5(u1 + c3)
        else:
            u1 = self.deconv1(l4)
            b5 = self.bn5(u1)

        l5 = F.relu(b5)
        u2 = self.deconv2(l5)
        b6 = self.bn6(u2 + c2)
        l6 = F.relu(b6)
        u3 = self.deconv3(l6)
        b7 = self.bn7(u3 + c1)
        l7 = F.relu(b7)
        u4 = self.deconv4(l7)
        y = torch.tanh(u4)
        return y

# 初始化器,用于初始化生成器和判别器的权重
def weights_init(net):
    classname = net.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(net.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(net.weight.data, 1.0, 0.02)
        nn.init.constant_(net.bias.data, 0)

4.3 模型训练阶段

有了模型和数据,我们接下来需要开始训练了。在训练之前,我们还需构建损失函数和优化器。网络的损失函数采用

版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。