首页 > 编程知识 正文

施密特触发器仿真图(施密特触发器内部电路图)

时间:2023-05-06 13:50:39 阅读:76862 作者:4727

施密特触发器的原理图解详细分析重要特性。 施密特触发器具有以下特性。 输入电压有两个阈值VL、VH,VL施密特触发器通常用作缓冲器以消除输入端的干扰。

施密特波形图

施密特触发器也有两种稳定状态,但与一般的触发器不同,施密特触发器采用电位触发方式,其状态由输入信号的电位维持; 对于负向递减和正向递增这两个不同变化方向的输入信号,施密特触发器具有不同的阈值电压。

门电路有阈值电压,输入电压从低电平上升到阈值电压,或从高电平下降到阈值电压时,电路的状态会发生变化。 施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器具有两个阈值电压:正向阈值电压和负向阈值电压。 输入信号从低电平上升到高电平的过程中使电路状态变化的输入电压称为正方向阈值电压,输入信号从高电平下降到低电平的过程中使电路状态变化的输入电压称为负方向阈值电压。 正向阈值电压与负向阈值电压之差称为再生电压。

这是阈值开关电路,是具有突变输入——的输出特性的门电路。 此电路经设计以防止因输入电压的微小变化(低于某一阈值)而引起的输出电压的变化。

利用施密特触发器在状态转换过程中的正反馈作用,可以将边缘变化缓慢的周期性信号转换为边缘陡峭的矩形脉冲信号。 的信号,如果宽度大于vt,则在施密特触发器的输出端可得到同等频率的矩形脉冲信号。

输入电压从低向高增加,若达到v,则输出电压急剧变化,但输入电压Vi从高向低变化,若达到V-,则输出电压急剧变化,因此产生输出电压变化延迟的现象,特别适用于要求一定延迟启动的电路

从传感器得到的矩形脉冲在被传输时经常会发生波形失真。 传输线路的容量大时,波形的上升明显变差。 在传输线路较长且接收端阻抗与传输线路的阻抗不一致的情况下,在波形的上升沿和下降沿产生振荡现象; 当其他脉冲信号通过布线间的分布电容或共用电源线重叠在矩形脉冲信号上时,在信号中产生附加的噪声。 在上述任一情况下,通过施密特反相触发进行整形,都可以得到比较理想的矩形脉冲波形。 只要施密特触发器的vt和vt-设定正确,都可以获得满意的整形效果。

施密特触发器的应用

1 .波形转换

可以把三角波、正弦波等变成矩形波。

2 .脉冲波整形

在数字系统中,矩形脉冲在传输过程中经常发生波形失真,上升沿和下降沿可能不理想。 用施密特触发器整形后,可以得到理想的矩形脉冲。

3 .脉冲鉴赏幅度

对于宽度不同的不规则脉冲信号,如果添加到施密特触发器的输入端,则可以选择宽度大于想要设定的值的脉冲信号进行输出。

施密特触发器常用芯片:

74LS18双4输入和关断门(施密特触发器) () ) ) ) ) ) ) ) ) ) ) ) ) ) )。

74LS19六变频器(施密特触发() () ) ) ) ) )

74132、74LS132、74S132、74F132、74HC132四2输入和施密特触发以外

74221、74LS221、74 HC221、74 C221双单稳态多谐振荡器(有施密特触发) ) ) ) ) )0)

定义触发器

施密特触发电路(简称波形整形电路)是一种波形整形电路,当什么波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉搏输出。 与比较器不同,施密特触发电路具有两个临界电压,形成一个滞后区,可以防止滞后范围内的噪声干扰电路的正常工作。 对于遥控接收线路,传感器输入电路都用于整形。

施密特触发器

一般比较器只有一个临界电压进行比较,但如果输入端有噪声多次往返于临界电压,则输出端受到噪声,其正负状态无法正常转换。 如图1所示。

/p>


                           图1  (a)反相比较器                                                                (b)输入输出波形

施密特触发器如图2 所示,其输出电压经由R1 、R2 分压后送回到运算放大器的非反相输入端形成正反馈。因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示

   图2  (a)反相活力的烧鹅触发器                         (b)输入输出波形

 

表1施密特触发器的滞后特性

上临界电压VTH

下临界电压VTL

滞后宽度(电压)VH

VTL<噪声<VTH

输入端信号νI 上升到比VTH 大时,触发电路使νO 转态

输入端信号νI 下降到比VTL 小时,触发电路使νO 转态

上、下临界电压差VH =VTH -VTL

噪声在容许的滞 后宽度范围内,νO 维持稳定状态

反相施密特触发器

电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换:

νO= ±Vsat 。输出电压经由R1 、R2 分压后反馈到非反相输入端:ν+= βνO,

其中反馈因数=

当νO为正饱和状态(+Vsat  )时,由正反馈得上临界电压

当νO 为负饱和状态(- Vsat  )时,由正反馈得下临界电压

VTH 与VTL 之间的电压差为滞后电压:2R1

       图3   (a)输入、输出波形                                      (b)转换特性曲线

输入、输出波形及转换特性曲线如图3(b)所示。

当输入信号上升到大于上临界电压VTH 时,输出信号由正状态转变为

负状态即: νI >VTH→νo = - Vsat 

当输入信号下降到小于下临界电压VTL 时,输出信号由负状态转变为

正状态即: νI <VTL→νo = + Vsat 

输出信号在正、负两状态之间转变,输出波形为方波。

非反相施密特电路

                                                       图4 非反相xydds触发器

非反相施密特电路的输入信号与反馈信号均接至非反相输入端,如图4所示。

由重迭定理可得非反相端电压

反相输入端接地: ν- = 0,当ν+ = ν- = 0 时的输入电压即为临界电压。

将ν+ = 0 代入上式得

整理后得临界电压

当νo 为负饱和状态时,可得上临界电压

当νo为正饱和状态时,可得下临界电压,

VTH与VTL之间的电压差为滞后电压:

 

      图5 (a)计算机仿真图                     (b)转换特性曲线

输入、输出波形与转换特性曲线如图5所示。

当输入信号下降到小于下临界电压VTL 时,输出信号由正状态转变为

负状态:νo < VTL →νo = - Vsat 

当输入信号上升到大于上临界电压VTH 时,输出信号由负状态转变为

正状态: νo > VTL →νo = + Vsat 

输出信号在正、负两状态之间转变,输出波形为方波。

xydds触发器电路原理实验:

如图6,当Vi 大于VR 时运算放大器的输出会得到一个正向电压输出;若VR 大于

Vi 时则会得到一个负电压。电压的大小则由两个齐紊二极管来限压。理想的运

算放大器其输出上升时间为0,而在实际的电路上是上可能得到这么理想的曲

线,一般从负压上升到正压需要一小段的上升时间。换言之,运算放大器并上能

立刻反应Vi 及VR 所形成的电压差。

如果参考电压VR 固定,那么当Vi 慢慢增加时,仅在Vi-VR≧ V1 时。运算

放大器的输出达到Vmax;而当Vi 渐渐减小时却必须于Vi-VR≦ V1 伏特时,输

出才为Vmin。也即,欲达Vmax 及Vmin 输出电压的条件上一样,两者Vi-VR

值相差V1,这种情形称为迟滞(hysteresis)现象。xydds触发器便是利用这种现象

而做成的电路。

反相的xydds触发器,输出电压经由分压电路回授至运算放大器,参考电压

则加在R1 及R2 的末端。回授β 值为R2/(R1+R2),此电路为正回授,如果输出

增加了V,则有回授βV 到运算放大器。

当Vi<V+时,

V+=VR+(R2/R1+R2)(Vmax-VR)

当Vi=V+时,输出转为Vmin。

当Vi>V+

V+=VR-(R2/R1+R2)(Vmin+VR)

若此时V+渐渐小至V2,则输出又转为Vmax。由于迟滞现象,使得触发输出电

压转相的电压有所上同,输入电压增加产生输出转相时所的电压,要比输入电压

降低时所产生的输出转相所需电压来得大(V1>V2)。

版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。