首页 > 编程知识 正文

家里网速不稳定(我们的法则)

时间:2023-05-03 11:26:24 阅读:88505 作者:4924

由于对原始数据潜在概率分布的强大感知能力,GAN成为目前最流行的生成模型之一。 但是,训练不稳定、参加难度大是困扰GAN爱好者的老问题。 这篇文章满载着GAN培训的心得,希望对有志于此领域研究和工作的读者有所帮助!

在目前的深度学习研究领域中,对抗生成网络(GAN )是最热门的话题之一。 近几个月来,有关GAN的论文数量呈井喷式增加。 GAN应该已经广泛应用于各种问题。 如果你之前不太了解的话,可以从下面的Github链接看到酷炫的gan APP :

359 Github.com/NA shory/gans-Awesome -应用程序? 源=后期页

迄今为止,我读过很多关于GAN的文献,但没有自己实践过。 因此,在浏览了给人带来启发的论文和Github代码仓库之后,决定自己训练一下简单的GAN。 果然,我很快就遇到了几个问题。

本文的目标读者是从GAN入门的热爱深度学习的朋友。 除非你有很大的运气,否则你自己第一次训练GAN的过程可能会非常沮丧,需要好几个小时才能成功。 当然,随着时间的推移和经验的增长,GAN的训练可能会变得更好。 但是,对于初学者来说,可能会犯一些错误,不知道从哪里开始调试好。 在本文中,我想和大家分享一下我从一开始就训练GAN时的观察和经验教训。 希望正文能节省几个小时的调试时间。

GAN 简介

在过去的一年左右里,深度学习附近的任何人(甚至没有从事过深度学习相关工作的人),应该对GAN有所了解(除非生活在深山的古老森林中,与世界隔绝)。 生成对抗网络(GAN )是数据的生成型模型,主要以深度神经网络的形式存在。 也就是说,给出一系列训练数据后,GAN可以学习推算数据的基本概率分布。 这非常有用,因为可以基于学习的概率分布生成原始训练数据集上未出现的样本。 如上面的链接所示,这产生了非常实用的APP应用。

因为这个领域的专家提供了很好的资源来说明GAN和他的工作相距甚远,所以这里不会重复他们的工作。 但是,为了保持文章的完整性,这里简单回顾一下相关概念。

GAN模型概述

生成对抗网络实际上是相互竞争的两个深层网络。 如果给定训练集x (例如几千张猫的图像),则生成网络g(x )时,随机向量将成为输入,并尝试生成与训练集中的图像相似的新图像样本。 判别器网络d(x )是试图区别训练集x的“真的”猫的图像和由生成器生成的“假的”猫的图像的二分类器。 这样,生成网络的作用就是学习x中数据的分布。 由此,可以生成看起来像真的猫的图像,使判别器无法区别来自训练集中的猫的图像和来自生成器的猫的图像。 判别器通过学习追随生成器的进化,试图以新的方法生成能够“欺骗”判别器的“伪”猫图像。

最终,如果一切顺利,生成器将非常善于学习训练数据的真实分布,生成实际可见的猫的图像。 判别器不能区别训练集中的猫图像和生成的猫图像了。

从这个意义上说,这两个网络总是努力使对方不能很好地完成自己的任务。 那么,这到底是如何起作用的呢?

另一种GAN的观点是,判别器试图通过高速生成器实际的猫图像看起来是什么样来引导生成器。 最终,生成器弄清楚了问题,开始生成看起来真实的猫的图像。 训练GAN的方法类似于博弈论中的极大极小算法,两个网络试图达到同时考虑两者的纳什均衡。 有关详细信息,请参阅本文底部的参考资料。

GAN 训练面临的挑战

下,继续分析GAN的训练过程。 为了简单起见,我使用了“Keras Tensorflow后端”的组合,在MNIST数据集上训练了GAN (准确地说是DC-GAN )。 这并不太难。 在稍微调整了生成器和判别器网络之后,GAN可以生成清晰的MNIST图像。

生成的MNIST的数量

如果在MNIST上觉得黑白数字没那么有趣,那么生成各种物体和人的彩色图像就很酷了。 那样的话,问题就麻烦了。 攻克MNIST数据集后,很明显下一步是生成CIFAR-10图像。 经过每天的超级参数调整、网络架构的改变、网络层的添加或删除,我终于生成了类似于CIFAR-10的高质量图像。

用DC-GAN生成的青蛙

由DC-GAN生成的汽车

hldmf使用非常深的网络,但在大多数情况下性能并不好。 最后使用的真正有效的网络非常简单。 当我开始调整互联网和培训流程的时候,

经过 15 个 epoch 的训练后生成的图像从这样:

变成了这样:

最终的结果是:

下面,我基于自己犯过的错误以及一直以来学到的东西,总结出了 7 大规避 GAN 训练陷阱的法则。所以,如果你是一个 GAN 新兵,在训练中没有很多成功的经验,也许看看下面的几个方面可能会有所帮助:

郑重声明:下面我只是列举出了我尝试过的事情以及得到的结果。并且,我并不是说已经解决了所有训练 GAN 的问题。

1. 更大更多的卷积核

更大的卷积和可以覆盖前一层特征图中的更多像素,因此可以关注到更多的信息。在 CIFAR-10 数据集上,5*5 的卷积核可以取得很好的效果,而在判别器中使用 3*3 的卷积核会使判别器损失迅速趋近于 0。对于生成器来说,我们希望在顶层的卷积层中使用较大的卷积核来保持某种平滑性。而在较底层,我并没有发现改变卷积核的大小会带来任何关键的影响。

卷积核的数量的提升会大幅增加参数的数量,但通常我们确实需要更多的卷积核。我几乎在所有的卷积层中都使用了 128 个卷积核。特别是在生成器中,使用较少的卷积核会使得最终生成的图像太模糊。因此,似乎使用更多的卷积核有助于捕获额外的信息,最终会提升生成图像的清晰度。

2. 反转标签(Generated=True, Real=False)

尽管这一开始似乎有些奇怪,但是对我来说,改变标签的分配是一个重要的技巧。

如果你正在使用「真实图像=1」、「生成图像=0」的标签分配方法,将标签反转过来会对训练有所帮助。正如我们会在后文中看到的,这有助于在迭代早期梯度流的传播,也有助于训练的顺利进行。

3. 软标签和带噪声标签

这一点在训练判别器时极为重要。使用硬标签(非 1 即 0)几乎会在早期就摧毁所有的学习进程,导致判别器的损失迅速趋近于 0。我最终用一个 0-0.1 之间的随机数来代表「标签 0」(真实图像),并使用一个 0.9-1 之间的随机数来代表 「标签 1」(生成图像)。在训练生成器时则不用这样做。

此外,添加一些带噪声的标签是有所帮助的。在我的实验过程中,我将输入给判别器的图像中的 5% 的标签随机进行了反转,即真实图像被标记为生成图像、生成图像被标记为真实图像。

4. 批量归一化有所助益,但还有其它先决条件

批量归一化当然对提升最终的结果有所帮助。加入批量归一化可以最终生成明显更清晰的图像。但是,如果你错误地设置了卷积核的大小和数量,或者判别器损失迅速趋近于 0,那加入批量归一化可能也无济于事。

在网络中加入批量归一化(BN)层后生成的汽车

5. 一次训练一类

为了便于训练 GAN,确保输入数据有类似的特性是很有用的。例如,与其在 CIFAR-10 数据集中所有 10 个类别上训练 GAN,不如选出一个类别(比如汽车或青蛙),训练 GAN 根据此类数据生成图像。DCGAN 的另外一些变体可以很好地学会根据若干个类生成图像。例如,条件 GAN(CGAN)将类别标签一同作为输入,以类别标签为先验条件生成图像。但是,如果你从一个基础的 DCGAN 开始学习训练 GAN,最好保持模型简单。

6. 观察梯度的变化

如果可能的话,请监控网络中的梯度和损失变化。这可以帮助我们了解训练的进展情况。如果训练进展不是很顺利的话,这甚至可以帮助我们进行调试。

理想情况下,生成器应该在训练的早期接受大梯度,因为它需要学会如何生成看起来真实的数据。另一方面,判别器则在训练早期则不应该总是接受大梯度,因为它可以很容易地区分真实图像和生成图像。当生成器训练地足够好时,判别器就没有那么容易区分真实图像和生成图像了。它会不断发生错误,并得到较大的梯度。

我在 CIFAR-10 中的汽车上训练的几个早期版本的 GAN 有许多卷积层和批量归一化层,并且没有进行标签反转。除了监控梯度的变化趋势,监控梯度的大小也很重要。如果生成器中网络层的梯度太小,学习可能会很慢或者根本不会进行学习。

生成器顶层的梯度(x 轴:minibatch 迭代次数)

生成器底层的梯度(x 轴:minibatch 迭代次数)

判别器顶层的梯度(x 轴:minibatch 迭代次数)

判别器底层的梯度(x 轴:minibatch 迭代次数)

生成器最底层的梯度太小,无法进行任何的学习。判别器的梯度自始至终都没有变化,说明判别器并没有真正学到任何东西。现在,让我们将其与带有上述所有改进方案的 GAN 的梯度进行对比,改进后的 GAN 得到了很好的、与真实图像看起来类似的图像:

生成器顶层的梯度(x 轴:minibatch 迭代次数)

生成器底层的梯度(x 轴:minibatch 迭代次数)

判别器顶层的梯度(x 轴:minibatch 迭代次数)

判别器底层的梯度(x 轴:minibatch 迭代次数)

此时生成器底层的梯度明显要高于之前版本的 GAN。此外,随着训练的进展,梯度流的变化趋势与预期一样:生成器在训练早期梯度较大,而一旦生成器被训练得足够好,判别器的顶层就会维持高的梯度。

7.不要采用早停法(early stopping)

可能是由于我缺乏耐心,我犯了一个愚蠢的错误——在进行了几百个 minibatch 的训练后,当我看到损失函数仍然没有任何明显的下降,生成的样本仍然充满噪声时,我终止了训练。比起等到训练结束才意识到网络什么都没有学到,重新开始工作、节省时间确实让人心动。GAN 的训练时间很长,初始的少量的损失值和生成的样本几乎不能显示出任何趋势和进展。在结束训练过程并调整设置之前,还是很有必要等待一段时间的。

这条规则的一个例外情况是:如果你看到判别器损失迅速趋近于 0。如果发生了这种情况,几乎就没有任何机会补救了。最好在对网络或训练过程进行调整后重新开始训练。

最终的 GAN 的架构如下所示:

希望本文中的这些建议可以帮助所有人从头开始训练他们的第一个 DC-GAN。下面,本文将给出一些包含大量关于 GAN 的信息的学习资源:

GAN 论文参考:

「Generative Adversarial Networks」

https://arxiv.org/abs/1406.2661?source=post_page

「Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks」

https://arxiv.org/abs/1511.06434?source=post_page

「Improved Techniques for Training GANs」

https://arxiv.org/abs/1606.03498?source=post_page

其他参考链接:

「Training GANs: Better understanding and other improved techniques」

https://philparadis.wordpress.com/2017/04/24/training-gans-better-understanding-and-other-improved-techniques/?source=post_page

「NIPS 2016 GAN 教程」

https://arxiv.org/abs/1701.00160?source=post_page

「Conditional GAN」

https://arxiv.org/abs/1411.1784?source=post_page

本文最终版 GAN 的 Keras 代码链接如下:

https://github.com/utkd/gans/blob/master/cifar10dcgan.ipynb?source=post_page

via https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9雷锋网雷锋网雷锋网

版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。