首页 > 编程知识 正文

无人机雷达发现不了吗(无人机会被雷达发现吗)

时间:2023-05-04 17:04:13 阅读:99353 作者:1484

1

导读

年6月20日,一架美国RQ-4A无人机被伊朗击落。

图1 RQ-4A,翼展37米,是容易被雷达发现的原因之一。

伊朗公布了无人机的路线图,蓝色是无人机的轨迹,黄色是伊朗的飞行信息识别区,红色是伊朗的领海。黄点表示无人机收到伊朗无线电警告的位置,红点表示伊朗最终击落无人机的位置。

那么击落事件与伊朗防空雷达密切相关。

最近班长也在给很多同学讲解科普雷达的工作原理,所以趁着这次事件,把内容写下来。

雷达的基本原理

雷达的工作原理与声反射非常相似。

如果你朝着岩石、峡谷或洞穴等反射声音的物体方向大喊,你会听到回声。

如果你知道声音在空气中的速度,你就可以估计物体的距离和方向。

图2声波的回声

雷达以同样的方式使用电磁能量脉冲,如图3所示。

图3电磁波的反射

射频能量传输到反射物体并从反射物体反射。

一小部分反射能量返回到雷达设备。这种返回的能量称为回声。

雷达利用回波来确定反射物体的方向和距离。

图4雷达工作过程

雷达的英文名称是雷达、雷达、无线电(瞄准)探测和测距。

“雷达”一词是美国海军中校德兹杰M塔克和福尔福斯于1940年11月发明的。这个首字母缩略词在1943年第二次世界大战中被盟军采用,后来被国际上普遍认可。

在一定条件下,雷达系统可以测量这些目标的方向、高度、距离、航向和速度。

雷达电磁能量的频率不受昼夜影响,也能穿透云层。

这使得雷达系统能够确定飞机、船只或其他由于距离、黑暗或天气原因肉眼看不到的障碍物的位置。

现代雷达系统还可以从目标回波信号中提取比距离更多的信息。

然而,通过测量延迟时间来计算距离仍然是其最重要的功能之一。

雷达测距原理

图5雷达测距系统的简化框图

图5是雷达测距系统的简化框图。

脉冲信号发生器产生的矩形周期信号调制高频振荡,从而形成微波(射频)脉冲序列。

微波频率约为几百兆赫至几十千兆赫。比如一个雷达的实际频率是10GHz,波长是3cm,在X波段。

矩形脉冲信号的宽度在us和MS的数量级,微波信号由天线辐射,到达目标物体形成反射波,然后通过天线送回接收器。

在检测和放大微波信号之后,获得通常为矩形的延迟脉冲。

目标距离可以通过测量两个信号的延迟时间来计算。

图6主要发射和接收波形

雷达发射高脉冲功率的短脉冲。

这个脉冲被天线聚焦在一个方向上。如果在这个方向遇到障碍物,比如飞机,那么脉冲的一部分能量会向各个方向散射。一小部分也被反射回雷达。

雷达

天线接收到这种能量,雷达对包含的信息进行评估。

我们可以用一个简单的示波器测量的距离。

图7 示波器显示发射与反射过程

在示波器上,与发射的脉冲同步移动一个发光点,并留下一个轨迹。此时,当天线接收回波脉冲时,这个脉冲也会显示在示波器上。示波器上显示的两个脉冲之间的距离是飞机距离。

由于无线电波的传播是以恒定的速度(光速c0)进行的,这个距离是由高频发射信号的运行时决定的。

雷达目标的实际距离称为倾斜距离R,其表达式如下

R=c0*t/2

t为发射到反射回来的时间。

图7中的示波器不够直观。

另一种回波指示设备称为"平面位置显示器PPI",见图8。它利用阴极射线管屏幕中心表示雷达站位置,每次扫描开始都自屏幕中心产生一个亮点,此亮点以恒速沿半径向外扫描(称为距离扫描)并随天线方位变化同步旋转(称为方位扫描)。

扫描的指向对应着天线的方位角,若天线指向正北方向时,扫描线设定为垂直向上。反射回波信号可以控制屏幕在各个位置产生加强亮点,如果加强亮点离屏幕中心越远,表示目标物体与雷达站距离越远。

利用长cjdbm显示屏幕可以使天线旋转一周时亮点强度保持不变,从而形成受回波反射信号全面控制的二维图像。

图8 雷达PPI

我们在电视天气预报中看到的云图就是这类系统的应用实例。

图9 雷达天气云图(台风)

雷达信号的频谱特征

我们假设图6所示的基本参数如下:

高频振荡(载波、射频)频率fc=200MHz矩形脉冲(调制信号)宽度T0=100ns矩形脉冲重复周期T1=100us

实际的雷达系统脉冲要复杂一点,如图10所示。

图10 实际的雷达系统信号

高频振荡信号的时域表达式,

矩形脉冲可以用g(t)表示,f(t)为雷达的发射信号

那么雷达发射信号f(t)的频谱可以通过求解傅里叶变换得到

时域的乘积,等于频域的卷积。

由于余弦函数的傅里叶变换为冲激函数,矩形脉冲的傅里叶变换为Sa函数。

所以整体上雷达信号f(t)的傅里叶变换为Sa函数搬移到+-ωc两侧。

图11 雷达信号幅度谱

Sa的中心对称点为wc,图11中为200MHz。

同时Sa函数中心点wc两边过零点为wc+2π/T0,wc-2π/T0,图11中为210MHz和190MHz。

实际的雷达矩形脉冲必然是周期的,那么频域就会离散化,离散的间隔就是时域周期的倒数。

如果不理解这句话,请看班长之前的文章哦。傅里叶变换FT-FS-DTFT-DFS复杂?理解了离散周期的概念,就懂了!

所以,实际的雷达信号的频谱是离散的,在每个离散点是冲激函数,离散间隔为1/T1,本文中为0.01MHz。如果画在图11中,将会非常的密集。

总结

雷达的基本原理虽然简单,但在实际的应用中会有大量的困难与问题需要解决。如探寻隐身目标,反击辐射导弹,应对低空突防,抵御电子干扰等实际问题,迫切需要研究雷达优化配置与组网、信息压缩及其传输、信息融合与决策、雷达目标的大规模综合显示以及人工智能技术的应用等新概念和新理论,并建立全新的数字化、软件化、全自动化的防空雷达网[2]。

图12 有源相控阵雷达

参考文献:

[1]radartutorial.eu

[2]神勇的衬衫,应启珩,brdyc."信号与系统(第三版)",2010.

看到这里,帮班长点个赞吧,欢迎在评论区留言讨论!

版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。