首页 > 编程知识 正文

rc4加密解密算法实验内容,rc4加密解密算法密钥调度算法

时间:2023-05-03 12:14:17 阅读:194714 作者:2324

       RC4是一种对称密码算法,它属于对称密码算法中的序列密码(streamcipher,也称为流密码),它是可变密钥长度,面向字节操作的流密码

RC4是流密码streamcipher中的一种,为序列密码。RC4加密算法是Ron Rivest在1987年设计出的密钥长度可变的加密算法簇。起初该算法是商业机密,直到1994年,它才公诸于众。由于RC4具有算法简单,运算速度快,软硬件实现都十分容易等优点,使其在一些协议和标准里得到了广泛应用。

流密码也属于对称密码,但与分组加密算法不同的是,流密码不对明文数据进行分组,而是用密钥生成与明文一样长短的密码流对明文进行加密,加解密使用相同的密钥

RC4算法特点:(1)、算法简洁易于软件实现,加密速度快,安全性比较高;(2)、密钥长度可变,一般用256个字节。

        对称密码算法的工作方式有四种:电子密码本(ECB, electronic codebook)方式、密码分组链接(CBC, cipherblock chaining)方式、密文反馈(CFB, cipher-feedback)方式、输出反馈(OFB, output-feedback)方式。

         RC4算法采用的是输出反馈工作方式,所以可以用一个短的密钥产生一个相对较长的密钥序列

         OFB方式的最大的优点是消息如果发生错误(这里指的是消息的某一位发生了改变,而不是消息的某一位丢失),错误不会传递到产生的密钥序列上;缺点是对插入攻击很敏感,并且对同步的要求比较高。

         RC4的执行速度相当快,它大约是分块密码算法DES的5倍,是3DES的15倍,且比高级加密算法AES也快很多。RC4算法简单,实现容易。RC4的安全保证主要在于输入密钥的产生途径,只要在这方面不出现漏洞,采用128bit的密钥是非常安全的。

         RC4算法加密流程:包括密钥调度算法KSA伪随机子密码生成算法PRGA两大部分(以密钥长度为256个字节为例)。

         密钥调度算法:首先初始化状态矢量S,矢量S中元素的值被按升序从0到255排列,即S[0]=00, S[1]=1, …, S[255]=255.同时建立一个临时矢量T,如果密钥K的长度为256字节,则将K赋给T。否则,若密钥长度为keylen字节,则将K的值赋给T的前keylen个元素,并循环重复用K的值赋给T剩下的元素,直到T的所有元素都被赋值。

      

在介绍RC4算法原理之前,先看看算法中的几个关键变量:

       1、密钥流:RC4算法的关键是根据明文和密钥生成相应的密钥流,密钥流的长度和明文的长度是对应的,也就是说明文的长度是500字节,那么密钥流也是500字节。当然,加密生成的密文也是500字节,因为密文第i字节=明文第i字节^密钥流第i字节

       2、状态向量S:长度为256,S[0],S[1].....S[255]。每个单元都是一个字节,算法运行的任何时候,S都包括0-255的8比特数的排列组合,只不过值的位置发生了变换;

       3、临时向量T:长度也为256,每个单元也是一个字节。如果密钥的长度是256字节,就直接把密钥的值赋给T,否则,轮转地将密钥的每个字节赋给T;

       4、密钥K:长度为1-256字节,注意密钥的长度keylen 与明文长度、密钥流的长度没有必然关系,通常密钥的长度趣味16字节(128比特)。

RC4的原理分为三步:

1、初始化S和T

for i=0 to 255 do

   S[i] =i;

   T[i]=K[ imodkeylen ];

2、初始排列S

for i=0 to 255 do

   j= ( j+S[i]+T[i])mod256;

   swap(S[i],S[j]);

3、产生密钥流

for r=0 to len do  //r为明文长度,r字节

   i=(i+1) mod 256;

   j=(j+S[i])mod 256;

   swap(S[i],S[j]);

   t=(S[i]+S[j])mod 256;

   k[r]=S[t];

下面给出RC4加密解密的C++实现:

加密类:

/*加密类*/class RC4 {public:/*构造函数,参数为密钥长度*/RC4(int kl):keylen(kl) {srand((unsigned)time(NULL));for(int i=0;i<kl;++i){ //随机生产长度为keylen字节的密钥int tmp=rand()%256;K.push_back(char(tmp));}}/*由明文产生密文*/void encryption(const string &,const string &,const string &);private:unsigned char S[256]; //状态向量,共256字节unsigned char T[256]; //临时向量,共256字节int keylen;//密钥长度,keylen个字节,取值范围为1-256vector<char> K; //可变长度密钥vector<char> k; //密钥流/*初始化状态向量S和临时向量T,供keyStream方法调用*/void initial() {for(int i=0;i<256;++i){S[i]=i;T[i]=K[i%keylen];}}/*初始排列状态向量S,供keyStream方法调用*/void rangeS() {int j=0;for(int i=0;i<256;++i){j=(j+S[i]+T[i])%256;//cout<<"j="<<j<<endl;S[i]=S[i]+S[j];S[j]=S[i]-S[j];S[i]=S[i]-S[j];}}/*生成密钥流len:明文为len个字节*/void keyStream(int len);};void RC4::keyStream(int len) {initial();rangeS();int i=0,j=0,t;while(len--){i=(i+1)%256;j=(j+S[i])%256;S[i]=S[i]+S[j];S[j]=S[i]-S[j];S[i]=S[i]-S[j];t=(S[i]+S[j])%256;k.push_back(S[t]);}}void RC4::encryption(const string &plaintext,const string &ks,const string &ciphertext) {ifstream in;ofstream out,outks;in.open(plaintext);//获取输入流的长度in.seekg(0,ios::end);int lenFile=in.tellg();in.seekg(0, ios::beg);//生产密钥流keyStream(lenFile);outks.open(ks);for(int i=0;i<lenFile;++i){outks<<(k[i]);}outks.close();//明文内容读入bits中unsigned char *bits=new unsigned char[lenFile];in.read((char *)bits,lenFile);in.close();out.open(ciphertext);//将明文按字节依次与密钥流异或后输出到密文文件中for(int i=0;i<lenFile;++i){out<<(unsigned char)(bits[i]^k[i]);} out.close();delete []bits;} 解密类: /*解密类*/class RC4_decryption{public:/*构造函数,参数为密钥流文件和密文文件*/RC4_decryption(const string ks,const string ct):keystream(ks),ciphertext(ct) {}/*解密方法,参数为解密文件名*/void decryption(const string &);private:string ciphertext,keystream;};void RC4_decryption::decryption(const string &res){ifstream inks,incp;ofstream out;inks.open(keystream);incp.open(ciphertext);//计算密文长度inks.seekg(0,ios::end);const int lenFile=inks.tellg();inks.seekg(0, ios::beg);//读入密钥流unsigned char *bitKey=new unsigned char[lenFile];inks.read((char *)bitKey,lenFile);inks.close();//读入密文unsigned char *bitCip=new unsigned char[lenFile];incp.read((char *)bitCip,lenFile);incp.close();//解密后结果输出到解密文件out.open(res);for(int i=0;i<lenFile;++i)out<<(unsigned char)(bitKey[i]^bitCip[i]);out.close();}

程序实现时,需要注意的是,状态向量数组S和临时向量数组T的类型应设为unsigned char,而不是char。因为在一些机器下,将char默认做为signed char看待,在算法中计算下标i,j的时候,会涉及char转int,如果是signed的char,那么将char的8位拷贝到int的低8位后,还会根据char的符号为,在int的高位补0或1。由于密钥是随机产生的,如果遇到密钥的某个字节的高位为1的话,那么计算得到的数组下标为负数,就会越界。

程序运行示例

main函数:

int main(){RC4 rc4(16); //密钥长16字节rc4.encryption("明文.txt","密钥流.txt","密文.txt");RC4_decryption decrypt("密钥流.txt","密文.txt");decrypt.decryption("解密文件.txt");}

明文:我爱小兔子!

密文:'柀L&t餥6洲

密钥流:镈膺嚬3屽u

解密文件:我爱小兔子!


From:

http://blog.csdn.net/fengbingchun/article/details/42929883      这里面有调用OPENSSL中API的实例

http://www.tuicool.com/articles/AjAjm2

注:遇到RC4加密的数据 想解密数据 故此摘录


版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。