首页 > 编程知识 正文

二维向量叉乘几何意义,三维向量的叉积

时间:2023-05-06 15:39:04 阅读:235560 作者:1790

叉乘(cross product)
相对于点乘,叉乘可能更有用吧。2维空间中的叉乘是:
    V1(x1, y1) X V2(x2, y2) = x1y2 – y1x2
看起来像个标量,事实上叉乘的结果是个向量,方向在z轴上。上述结果是它的模。在二维空间里,让我们暂时忽略它的方向,将结果看成一个向量,那么这个结果类似于上述的点积,我们有:
    A x B = |A||B|Sin(θ)
然而角度 θ和上面点乘的角度有一点点不同,他是有正负的,是指从A到B的角度。下图中 θ为负。
另外还有一个有用的特征那就是叉积的绝对值就是A和B为两边说形成的平行四边形的面积。也就是AB所包围三角形面积的两倍。在计算面积时,我们要经常用到叉积。
(译注:三维及以上的叉乘参看维基:http://en.wikipedia.org/wiki/Cross_product)

叉积的几何意义有三:

1、A*B=|爱听歌的巨人/p>

其中α表示A到B的夹角,用以判断该角度是正或者负。这个结论可用于四个点中任意三个点构成的三角形,判断另外一个点是否在三角形中,那么四个点构成三个向量叉积的结果就能判断。

2、A*B=x1*y2-x2*y1.

得到的结果应该是向量,但是取其模可以用于由A和B构成的平行四边形的面积,进而可以得到两个三角形的面积。

3、A*B=x1*y2-x2*y1.

得到的结果为一个向量,这个向量垂直于向量A和B。

 

以上是个人理解,如有错误请指正。

版权声明:该文观点仅代表作者本人。处理文章:请发送邮件至 三1五14八八95#扣扣.com 举报,一经查实,本站将立刻删除。